1. The graph of f'(x) is shown below. For which of the following values of x is f(x) concave down?



A. 
$$x = \frac{1}{2}$$

B. 
$$x = \frac{1}{2}$$

C. 
$$x = 2$$

A. 
$$x = \frac{1}{2}$$
  
B.  $x = \frac{3}{2}$   
C.  $x = 2$   
D.  $x = \frac{5}{2}$ 

E. 
$$x = 3$$

2. Find the coordinates of the point where the line tangent to the parabola  $y^2 = 8x$  at (2,4) intersects the axis of symmetry of the parabola.

3. Chord  $\overline{AB}$  of the parabola  $y=x^2$  moves up from the vertex at  $\frac{3}{4}\frac{units}{sec}$ , always remaining parallel to the x-axis. Triangle ABC is formed by  $\overline{AB}$  and the two tangents to the parabola at A and at B. The triangle increases in area as  $\overline{AB}$  moves up. Find the rate at which area is increasing in  $\frac{units^2}{sec}$  when  $\overline{AB}$  is 4 units above the vertex.

4. Given the curve  $y^2=150-10x$ ,  $0 \le x \le 15$ , find the coordinates of the point on the curve in the first quadrant that is nearest the origin.

5. The curve  $y = \frac{ax+b}{(x-4)(x-1)}$  has a relative maximum at the point (2,-1). Find a and b.

- 6. If  $f(x) = e^x$ ,  $g(x) = \sin x$ , and h(x) = f(g(x)), then  $h'(\frac{\pi}{2}) =$ 
  - A. -1
  - B. 0
  - C.  $e^{-\frac{\pi}{2}}$
  - D. 1
  - E.  $e^{\frac{\pi}{2}}$
- 7. If the function f(x) is such that f(1) = 4, f(2) = 4, and f''(x) exists and is positive on the closed interval [0,4], then we must have
  - A. f'(1.5) = 0
  - B. f'(1.5) > 0
  - C. f'(3) > 0
  - D. f'(3) < 0
  - E. None of the above

8. Which of the following functions does not satisfy the conditions necessary to apply Rolle's Theorem?

A. 
$$f(x) = x^3 - x$$
 on [0,1]

B. 
$$f(x) = \sqrt{8 - x^3}$$
 on  $[-2,2]$ 

C. 
$$f(x) = x^{\frac{4}{3}} - 1$$
 on  $[-1,1]$ 

D. 
$$f(x) = \frac{x^2 - 4}{x - 3}$$
 on  $[-2,2]$ 

E. 
$$f(x) = x^2 - 4x$$
 on [0,4]

- 9. The function  $f(x) = x^3 4x^2 + 9x 5$  in the vicinity of the point (1,1) is
  - A. Increasing at a decreasing rate
  - B. Increasing at an increasing rate
  - C. Decreasing at a decreasing rate
  - D. Decreasing at an increasing rate
  - E. Neither increasing nor decreasing
- 10. The line y = 4x + 13 is tangent to the curve  $y = -2x^2 + kx + 5$ , where k < 0. Find k.

11. Let  $f(x) = \begin{cases} x + 2a, & x < 1 \\ ax^2 + 7x - 4, & x \ge 1 \end{cases}$ . If a is such that f(x) is continuous at x = 1, is f(x) also differentiable at x = 1? Justify your answer.

12. Determine the coefficient c so that the curve  $f(x) = ax^3 + bx^2 + cx + d$  has a relative minimum at (2, -10) and a point of inflection at (0,6).

- 13. The coordinates of the point where the normal to the curve of  $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x$  when x = 1 intersects the *y*-axis are
  - A.  $\left(0, \frac{3}{2}\right)$
  - B.  $\left(\frac{3}{2},0\right)$
  - C.  $\left(0, \frac{13}{6}\right)$
  - D.  $\left(\frac{13}{6}, 0\right)$
  - E.  $\left(0, \frac{5}{3}\right)$

- 14.  $3x^2$  and  $3x^3$  are both increasing and positive for x > 0. How many times greater is the rate of increase of  $3x^3$  than the rate of increase of  $3x^2$  at x = 4?
  - A. 2
  - B. 4
  - C. 6
  - D. 7
  - E. 16
- 15.  $y = x \frac{k}{a^2}x^2$ , k > 0. If a is doubled, then the maximum height of the curve
  - A. Remains the same
  - B. Is increased by a factor of 2
  - C. Is decreased by a factor of 2
  - D. Is increased by a factor of 4
  - E. Is increased by a factor of 4

- 16. Let f and g be differentiable functions, where f(2) = 6, g(2) = 4, f'(2) = -5, g'(2) = -2, f'(4) = -3, g'(4) = 3. If h(x) = f(g(x)), then h'(2) = -2
  - A. -20
  - B. -12
  - C. -6
  - D. -3
  - E. 6
- 17. The graph of f'(x) is shown below. On the interval  $0 \le x \le 6$ , for what value of x does f(x) achieve its absolute maximum value.



- A. x = 0
- B. x = 2
- C. x = 4
- D. x = 6
- E. Cannot be determined
- 18. If f'(x) exists for all x and f(1) = 10 and f(8) = -4, then, for at least one value of c in the open interval (1,8), which of the following must be true?
  - A. f(c) = 12
  - B. f(c) = -12
  - C. f'(c) = 2
  - D. f'(c) = -2
  - E.  $f(c^2) = 16$

- 19. What is the value of k such that the curve  $y = x^3 \frac{k}{x}$  has a point of inflection at x = 1?
  - A. k = 2
  - B. k = -2
  - C. k = 3
  - D. k = -3
  - E. None of the above

20. Find a positive value of x that satisfies the Mean Value Theorem for  $f(x) = \sin x$  on the closed interval  $\left[-\frac{3\pi}{2},\frac{3\pi}{2}\right]$ .

21.  $\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$ . If x is increasing at 4 units/sec and y is increasing at 6 units/sec, how fast is z increasing when x = 20 and y = 30?